Think of it this way:
You have a pipe that works well. It has a 600mm stinger.
1. You cut the stinger off where it joins the chamber, make the resulting hole big enough, poke 300mm of the stinger into the pipe. Weld it in place. You now have a conventional pipe with 300mm stinger visible, But should perform pretty much the same? Probably quieter?
2. You cut the stinger of where it joins the chamber, block the resulting hole. Cut the appropriate size hole in the chamber, weld the stinger into the pipe. Bend the stinger to fit as best it can. (Obviously in reality you’d do all the bending first.) should perform as above, and stock?
I’m far from an expert, but think the engine would “feel” the same thing with all three variations.
Yes, I agree wholeheartedly with your observations and suggestions
- the only problem is the location of the silencer. As it would be very difficult to locate it at the end of the "new" stinger for either of your two options, it would be much less hassle to leave it where it is and just increase the length of the stinger to meet it. Naturally, this raises the question of whether to increase the diameter of the stinger to compensate for its increased length.
No one knows the answers James. Make your chamber with a flange, gland or spigot at the end of the baffle cone and test variations. If you do this thoroughly you will probably be the world expert on this sort of empirical testing on your model engine.
Good advice, but I'm trying to get it right first time without having to experiment
. Two-stroke exhausts is one area where I prefer to use known concepts rather than to do my own development - I'd much rather buy someone else's pipe (if the design and characteristics suit my needs) than develop my own. I can appreciate how much work is involved in two-stroke exhaust development - I just haven't got enough time or resources to do it.
James P - as to stingers - they are just as complicated as the pipe proper - a good "starting point" is:
What Gordon Jennings said in his paper about expansion chambers. You can go by his suggestion of making the stinger diameter 60% of the header diameter, and making its length 12 times the distance of the stinger diameter, which works fine for a well designed pipe. Using that as a guide I figured a 125 reving to 10,000RPM needs a 22mm stinger which provides .08psi back pressure. Jennings and Bell both said that the stinger creates pipe back pressure. I'm inclined to have a stinger that gives somewhere between .1 and .5psi back pressure.
from: http://www.dragonfly75.com/motorbike/ECtheory.html
Thanks for that info. I had a look at the details provided and further investigated the concept of pressure drop between one end of a tube and the other. Unfortunately, I found the "calculator" on the Gates web-site unworkable - it kept giving figures of zero for all the quantities it was supposed to calculate and annoyingly didn't display the formula it was using.
Nevertheless, I found another formula which seemed to work. I used what I believe to be at least semi-realistic figures for dynamic viscosity and flow rate, but these quantities were constant for every calculation I made - only the length and diameter varied. I made three calculations to suit my hypotheses and obtained the following results:
1. For my existing stinger (25.4mm ID, 380mm long), I obtained a pressure difference (between one end of the stinger and the other) of 0.34PSI.
2. Simply increasing the length of the stinger to 630mm using the same size tube gave a pressure difference of 0.56PSI.
3. Increasing the diameter of the entire 630mm stinger to 28.6mm gave a pressure difference of 0.35PSI.
These results suggest that the pressure difference would increase markedly (65%) if I just made the existing stinger longer. However, the pressure difference would not increase nearly so much (only 3%) if I made the entire stinger from larger ID tube.
My knowledge and experience of fluid dynamics are weak to say the least, so feel free to pick holes in my "logic"
. At this stage however, it appears that I can make a new longer stinger from larger ID tube to meet the silencer in its existing position without a drastic increase in heat retention. It is early days yet though, as I have plenty of other things to do along the way!
Regards,
James
EDIT: I'm not sure that the quantities I used for calculating the pressure difference were all correct, so you may take the actual pressure results (PSI) above with a pinch of salt. However, the percentage differences obtained between the results for the various stinger diameters and lengths (65% and 3%) work out to be the same, so that particular comparison still seems to be valid.
While I'm in calculating mode
I have determined the ideal ID for a stinger 630mm long (to obtain the same pressure difference as I already have with the 25.4mm ID, 380mm long stinger) - the result is 28.8mm ID, not too far from the proposed 28.6mm ID stinger I intend to provide. Perhaps more usefully, I have also calculated the ideal length for a 28.6mm ID stinger - the result is a stinger 611mm long. Since I do have a little room for shortening, I may be able to achieve this figure.
I have to go now...my head is hurting again
.